
www.manaraa.com

Centrum voor Wiskunde en Informatica

Collaborative software development

M. de Jonge, E. Visser, J.M.W. Visser

Software Engineering (SEN)

SEN-R0113 May 31, 2001

www.manaraa.com

Report SEN-R0113
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

www.manaraa.com

Collaborative Software Development

Merijn de Jonge

email: Merijn.de.Jonge@cwi.nl

CWI

P.O. Box 49079, 1090 GB Amsterdam, The Netherlands

Eelco Visser

email: visser@acm.org

Universiteit Utrecht

Institute of Information and Computer Science

P.O. Box 80089, 3508 TB Utrecht, The Netherlands

Joost Visser

email: Joost.Visser@cwi.nl

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We present an approach to collaborative software development where obtaining components and contributing

components across organizational boundaries are explicit phases in the development process. A lightweight

generative infrastructure supports this approach with an online package base, and several generators that

simplify the construction and composition of component packages. The infrastructure ensures availability,

portability, and adaptability of components without centralized orchestration of the development process.

1998 ACM Computing Classification System: D.1.1, D.2.1, D.2.2, D.2.6, D.2.7, D.2.9, D.2.13, D.3.3

Keywords and Phrases: Collaborative, software development, software bundling, component based

1. Introduction
Reusability of components lies at the heart of component-based software development. The reusability
of a component is determined in part by the functionality it implements. If the functionality is more
generic, its potential for reuse is higher. But even for highly generic components, the actual scope of
reuse can be severely limited. In fact, the reusability of components is largely determined by issues
unrelated to their functionality.

• Availability: If I know or suspect certain functionality has been encapsulated in a component,
will I be able to find and obtain this component?

• Portability: Can I lift a component from its initial context and insert it into mine? Or does the
component silently assume a specific platform, specific peer components, or specific development,
compilation, run-time, test, or documentation environments different from mine?

• Adaptability: If the component’s functionality is close to what I need, but slightly off, can I
adapt it to my specific needs? When developing adaptations, can I reuse the original tests and
programming aids as well as the source?

• Contribution: If I develop components myself, can I make them reusable by others? How much
effort will that take from me, and from them?

www.manaraa.com

2

Extend and add components

Obtain packages

Contribute packages

Compose components

Select and configure components

Figure 1: Collaborative component-based software development can be described with a development
cycle with explicit phases for obtaining packages from, and contributing them to a shared repository.

These practical issues demonstrate that component reuse involves much more than multiple invoca-
tions of the same code. The issues of adaptability and contribution, in particular, venture beyond
‘as-is’ reuse into collaborative use and development.

To address non-functional as well as functional issues surrounding component reuse, we have devel-
oped a range of generative techniques for collaborative development of software components. These
techniques enable easy component sharing across project and organizational boundaries. Section 2
gives an overview of our approach, including terminology and a schematic development cycle. Sec-
tions 3 to 6 explain the generative techniques underlying each step in the development cycle.

Our techniques were developed in the course of about 18 months in the context of the development of
the transformation tool bundle XT [5]. The initial purpose of XT was to (i) distill a set of components
from previous language tool development projects and make their reuse as easy as possible, and (ii)
to demonstrate this reusability by developing a suite of program transformation tools on top of these
components. As our techniques are not specific to the program transformation domain, we describe
them independently from XT. Nonetheless, XT remains a prime example, implementation medium,
and breeding ground for further collaborative development techniques.

2. A Collaborative Development Process
Terminology Software components can be defined as ‘building blocks from which different software
systems can be composed’ [3]. Examples of components at run-time and compile-time are executables,
source modules, and libraries. In the context of collaborative component development, it is useful to
additionally distinguish a notion of component at distribution-time. Throughout the paper we will use
the word package for this notion. A package, then, is a source distribution of a set of (compile-time)
components, together with tools that automate their compilation, testing, and distribution processes.
These tools constitute the build environment of the components.

Development Cycle Figure 1 gives a schematic overview of the collaborative component development
process. In this figure package exchange is mediated by a repository of reusable software packages,
called a package base. In the first phase, those packages that contain components of interest are
downloaded from the package base, compiled and installed. Secondly, the components of interest are
identified within the installed packages, and they are configured for specific purposes. Third, new
functionality is implemented by extending some of the components, or developing additional ones.
Fourth, a specific application is implemented by capturing the component configuration and compo-
sition knowledge in an integration script, which may itself be viewed as a higher-level component.
Finally, changes to downloaded components and additional components are made available for reuse
by others, by contributing them to the package base. Steps two, three and four are performed in
frequent, short iterations (inner cycle), and their boundaries may be unsharp. The two outer steps of
uploading and downloading packages are performed in long, infrequent iterations (outer cycle).

Note that the possibility of extending components obtained from other sources requires that these

www.manaraa.com

3

package

identification

name = cpl

version = 0.1

location = http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/Soft/

description =

’Choice Point Library. Functions for efficient choice point

management to support backtrack programming.’

keywords = choice point, nondeterminism, backtracking

requires

aterm 1.4.5

Figure 2: An example of a package description file for the cpl package.

components are available as open source (at least within the desired reuse scope), and that code
ownership is absent. The infrastructure needed to participate in component exchange should be
minimal, and should be as easily available as the components themselves. Preferably, (parts of) the
infrastructure should be componentized for easy reuse.

3. Contribution of Packages
We start with general considerations about sensible selection of reusable components. Then we discuss
our own situation, where a number of components were distilled from existing systems. We describe
the steps that need to be taken to contribute such components to an online package base.

Start from Legacy In general, the development does not start in a vacuum. Various useful systems
may have been built and are probably still being maintained in different projects. Within these systems
distinct components may even be distinguishable at binary or source code level. Most likely, these
component have even been reused in more or less ad-hoc fashion across system or project boundaries.
Therefore, the best way to initialize systematic development of reusable components is to isolate these
‘old’ components, adapt them to the reuse infrastructure, and make them easily and more widely
reusable by contributing them to the package base.

From Legacy to Reusable Component Once a candidate component or a few closely related compo-
nents have been identified in an existing system, they are formed into a software package by the
following steps.

1. Automate configuration, compilation, testing and distribution: Our infrastructure requires that
the generators automake [10] and autoconf [9] are used for high-level definition and configuration
of automated compilation, test, and distribution processes.

2. Isolate source: Often, components are clearly distinguishable at run-time while their sources are
spread out through the source tree of the entire system. These sources need to be disentangled
and isolated into separate source trees.

3. Create a distribution: Once an isolated source tree is available whose configuration and compi-
lation have been automated with automake and autoconf, a source distribution can be created
with a single command.

4. Form a package: To form a package, the source distribution must be made available for download,
and a description of the package, including its download location, must be uploaded to the
package base. An example of a package description file is given in Figure 2.

Note that only package descriptions are uploaded to and stored in the package base. In Section 4,
we will explain how the information in these descriptions is used to generate self-contained bundles of
packages.

www.manaraa.com

4

Utrecht
CWI Universiteit

Cobol
renovation
project

online
package

base

tool
collect

package

description

package

Figure 3: Obtaining package bundles from the online package base.

Contribution of Components In our own software engineering research groups at Universiteit Utrecht
and CWI, a number of systems had been developed over the years in the context of numerous projects
related to the groups’ foci: program transformation and optimization, and interactive software devel-
opment and renovation. We observed that many of the tools developed in these projects were built
in a more or less component-based fashion, but nonetheless reuse across project boundaries proved
extremely problematic. As a result of these problems, components were often not reused, or their
reuse was performed in a cumbersome, ad-hoc fashion, involving code duplication and scavenging.

According to the procedure sketched above, we have been able to gather a diverse range of packages.
These include, for instance, parsing and pretty-print components, the compiler and standard libraries
of the rewriting language Stratego, a collection of modular grammars, the distributed process coordi-
nation architecture ToolBus, and more. By contribution of these packages to the package base, many
of the core assets of our groups have become easily reusable across project and even organizational
boundaries.

4. Obtaining Packages
In this section we will explain how a bundle of packages can be obtained through an (online) package
base. Generative techniques are used to integrate the compilation, testing, and distribution processes
of the different packages in a bundle. This phase of the development cycle is illustrated in Figure 3.

Shopping for Packages In order to obtain a specific bundle of packages from the online package base,
one goes through the following steps:

1. Select the packages from an HTML form, and press the ‘bundle’ button.

2. The browser pops up a window for saving the generated bundle to your file system. The bundle
still does not contain the selected packages, but only a tool to collect them.

3. Unpack the file, to obtain an ‘empty’ bundle, including the collection tool.

4. Invoke the collection tool to fully automatically download, unpack, and integrate all selected
packages into a single build environment.

For instance, the screenshot of Figure 4 shows the selection of the ToolBus and Stratego packages.

Package Form The HTML form, which the user fills out in step (1), is generated automatically
from the available package description files. The generator takes care of grouping descriptions of
different versions of the same package. When a new description is uploaded, the form is updated by
regeneration.

www.manaraa.com

5

Figure 4: Filling out the package selection form of the online package base available at
http://www.program-transformation.org/package-base/.

Bundle Generation When the user presses ‘bundle’, a bundle is generated from the form and the
package descriptions in the package base. The generator takes care of the following:

• Resolution of package dependencies: Apart from the packages selected by the user, all packages
they depend on, as declared in the requires clause of their description, are transitively selected
as well. The declared version requirements are taken into account. The resulting list of packages
is used to configure a generic collection tool.

• Build environment integration: After collecting the packages, their separate build environments
must be integrated into a single build environment for the entire bundle. This is supported
by generation of a bundle-specific configuration file, with which a generic build environment
is instantiated. The generated configuration file performs partial configuration of a package
when some other package requires so according to its description. Also, similar switches across
packages are unified in bundle switches.

Note that HTML forms and bundles are generated by the package base server, so this software is
not needed to participate in the package exchange via the package base. Nonetheless, this software is
available as a package itself, under the name autobundle.

On the client side no additional software is required. The installation procedure of a software bundle
consists of two user actions: specifying an installation location, and starting the build process.

5. Local Component Development
The inner cycle of the component development process is influenced by the fact that it takes place
within a larger collaborative process. In particular, an integrated build environment is obtained
together with the packages in a bundle. This implies that the support for configuration, building,
testing, and distributing components is reused as well as the components themselves. In this section

www.manaraa.com

6

Give a brief description of your grammar.

description = Grammar for the eXtensible Markup Language (XML)

Choose a maturity level (Volatile, Stable, or Immutable).

maturity = Volatile

Specify the extension of term files for your grammar.

suffix = xml

testset = preamble.xml suspect.xml remarks.xml GraphXML.dtd

Figure 5: A filled out grammar configuration form is used by the gbadd tool to automatically add a
new grammar to the Grammar Base.

we will explain various generative techniques that we developed for configuration, building, and testing.
Distribution techniques will be explained in Section 6.

Configuration For software configuration we depend on autoconf, an open source software package for
the generation of configure scripts. Configure scripts perform system checks to verify that a platform
fulfills all requirements for building a package. Furthermore, they offer switches to activate or configure
parts of a package.

Though autoconf allows configuration at a high level of abstraction, its input is still on the level
of directories and files. To abstract over these, we developed additional generators that introduce a
notion of component.

• Package configuration: We introduced package configuration files that define the contents of a
package by listing its components and their status (either as released or as unreleased compo-
nent). From these files, we generate autoconf input files, and the components are added to the
generic build environment.

• Component configuration: We introduced component property files in which component specific
parameters are declared, such as its name, version, test set, and source modules. From these
files, make rules and test scripts are generated for the component.

• Configuration initialization: We developed an interactive tool that generates the component’s
initial source subtree, including its component property file, and adapts the package configura-
tion file, whenever a new component needs to be added.

For example, addition of grammars to the Grammar Base package is supported by the tool gbadd. It
takes a grammar name and version, and offers the form as depicted in Figure 5 to the user. After
the form has been filled out, the build environment for the grammar is set up (required directories
are created and automake Makefiles are generated) and integrated into the build environment of the
Grammar Base.

Building As mentioned before, we rely on automake to automate the software build process, including
compilation, testing, and distribution. By generating complete Makefiles from concise automake input
files, automake offers several abstractions over the build process, e.g. how to obtain an executable from
a set of source files, and how to build distributions.

We observed that maintainability of automake files (like ordinary Makefiles) rapidly decreases as
projects get larger. This is caused by code duplication, increasing complexity, and a decrease in
readability. To improve this situation, we developed a few highly reusable automake modules, and
standardized their use. As a consequence, we reduced each component-specific automake file to a
concise, purely declarative Makefile module.

For example, in the Grammar Base package, the build process for grammars is expressed in a single
automake module, which is reused for every grammar. Changing the build process of the package only
requires editing this file. Per grammar, a single Makefile contains the declaration of the grammar
parameters.

www.manaraa.com

7

Testing The absence of centralized orchestration of the collaborative development process implies
that changes to components should preserve backward compatibility. To support this, extensive
automated regression tests should be shipped with components. Automake offers a mechanism for
declaring individual tests and running them collectively. The individual test scripts themselves must
be supplied by the developer.

To simplify testing, we developed generators that produce test scripts and test data required by
automake’s test mechanism. Test script generators consume a declaration of input to test, and option-
ally reference output. Test data generators produce regression data as a snapshot of a component’s
current functionality. Due to these generators, the effort to initiate and extend component tests has
been significantly reduced.

Development The generative techniques for configuration, building, and testing of components are
part of the integrated build environment that is obtained as part of a bundle of packages. As such,
these techniques form the backdrop for the inner phases of collaborative development: selection and
configuration of components, addition and extension, and composition of components. For instance,
when a component is extended with new functionality, the build environment supports running the
regression tests of the component, and updating them to test the new functionality. When new
components are added, generators support their insertion into the build process with reuse of generic
build support. Composition of components from different packages is facilitated by the standardization
and integration of the build environments of these packages.

6. Contribution of Packages (Revisited)
When, after a number of iterations in the inner cycle, the development converges on a set of stable
components, one may decide to make them more widely reusable, and re-enter the initial phase of
contributing components to the package base. Contributions can be mutations to existing components,
addition of new components to existing packages, or addition of new packages. The integrated build
environment that comes with a bundle of packages contains various kinds of support for performing
such contributions.

Selective Distribution Automake supports rules to automatically build a distribution from the infor-
mation contained in automake files. However, automake’s support for distribution generation is not
very flexible: every component defined in an automake file will be distributed. This prohibits the use
of automake for components that are still under development and not ready for distribution. To pre-
serve stability of a package distributions on the one hand and to benefit from the build environment
for the development of new (unstable) components on the other hand, we added support for selective
distribution via the package configuration files described in Section 5. In this file, each component
can be declared to be distributable or not.

Per-package or Self-contained Distribution After a (selective) distribution has been generated, it can
be contributed to the package base by uploading a package description and by making the distribution
itself available at a public download location. Such per-package distribution and contribution to the
package base allows further development of the package by the same or other development groups, via
new iterations of the development cycle.

As an alternative to per-package distribution generation, generation of self-contained distributions
is also supported by the build environments of software bundles. Self-contained distributions are
generated in order to ease download and installation of packages for use, rather than for development.
From these self-contained source distributions, binary distributions can be generated also. Currently,
Sun’s package format and the RPM format are supported.

7. Concluding Remarks
Contributions We presented an approach to collaborative software development where obtaining com-
ponents and contributing components across organizational boundaries are explicit phases in the de-
velopment process. We discussed a lightweight infrastructure to support this approach. The main

www.manaraa.com

8

ingredients in the implementation of this infrastructure are an online package base, and several gen-
erators that simplify the construction and composition of component packages. The infrastructure
ensures availability, portability, and adaptability of components without centralized orchestration of
the development process.

Experiences We initiated a package base to which, in the course of 4 months, 21 packages were
contributed by 3 different organizations. On the basis of these packages, a number of applications
have been developed, among which (i) a product line for Cobol legacy system renovation [12], (ii) a
documentation generator for a proprietary dialect of the specification and description language SDL
in collaboration with Lucent Technologies [4], and (iii) an implementation of a transformation system
for a subset of the Haskell functional programming language [8].

Related Work Many open source projects involve some level of collaborative development. Examples
are the Apache [1] and Mozilla [11] projects, the development of the GNU tools [6] and the Linux
kernel. The distribution infrastructures employed by these projects are insufficient for collaboration
across project boundaries. For instance, automake [10] and autoconf [9] automate and standardize
the configuration, build, test, and distribution processes for a single software package, but we needed
to supplement them with additional generators to support package composition with package depen-
dency resolution and build environment integration. Dependency resolution is supported by package
managers, such as RPM [2], but these are primarily intended to simplify distribution and installation
of binary packages. They offer no (or only very limited) support for the integration of the configura-
tion, build, test, and distribution processes of source distributions, which is essential for collaborative
development. In contrast, our infrastructure supports modification and extension of downloaded pack-
ages, and redistribution either per package, or as self-contained, possibly binary, distributions. The
Open Software Description format (OSD) [7] is a language for describing software components and is
similar to the package description format used to describe the packages in the package base. However,
OSD is designed for describing binary packages and their dependencies in order to simplify software
installation over Internet, not for describing source packages to allow composition of source trees as
needed for collaborative development.

Future Work Currently, component selection is done in two steps: first packages are obtained from
the package base, and then components of interest are selected from these packages. We intend to
implement a more sophisticated component selection mechanism where components can be selected
directly, while their retrieval from specific packages remains hidden. Moreover, we want to support
component selection by more advanced search and navigation. These improvements would bring
component selection to a yet more generative (i.e. problem-oriented rather than solution-oriented)
level.

www.manaraa.com

9

References

1. Apache web server. Apache Software Foundation. http://www.apache.org.

2. E. Bailey. Maximum RPM. Red Hat Software, Inc., 1997.

3. K. Czarnecki and U. W. Eisenecker. Generative Programming – Methods, Tools, and Applications.
Addison-Wesley, 2000.

4. M. de Jonge and R. Monajemi. Cost-effective maintenance tools for proprietary languages. sub-
mitted for publication, jan 2001.

5. M. de Jonge, E. Visser, and J. Visser. XT: A bundle of program transformation tools. In M. G. J.
van den Brand, M. Mernik, and D. Parigot, editors, Workshop on Language Descriptions, Tools
and Applications (LDTA’01), Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, April 2001. To appear.

6. The GNU project. http://www.gnu.org.

7. A. v. Hoff, H. Partovi, and T. Thai. The open software description format (OSD), 1997.
http://www.w3.org/TR/NOTE-OSD.html.

8. P. Johann and E. Visser. Warm fusion in Stratego: A case study in the generation of program
transformation systems. Annals of Mathematics and Artificial Intelligence, 29(1–4):1–34, 2000.

9. D. Mackenzie, R. McGrath, and N. Friedman. Autoconf: Generating automatic configuration
scripts, 1994. http://www.gnu.org/autoconf.

10. D. Mackenzie and T. Tromey. Automake. http://www.gnu.org.

11. Mozilla web browser project. The Mozilla Organization. http://www.mozilla.org.

12. H. Westra. CobolX: Transformations for improving Cobol. In Proceedings of the Second Stratego
Users Day. Technical Report, Univeriteit Utrecht. To appear, 2001.

